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Summary

The dispersion of a plume from a stationary or moving gas source into an environment is representative

of accidental or deliberate release of gases from land- or aerial-based vehicles, release of biochemicals,

or the release of odors from biological systems. Dispersion can be modeled by advection-diffusion PDEs

with spatially and time varying ambient mean velocity and eddy diffusivities. While mobile sensor-centric

schemes for gas source detection can adequately perform for dispersion processes with constant wind and

diffusivities, they are not applicable to processes with spatiotemporally varying wind and/or diffusivities.

The model-based detection scheme incorporates the moving sensor location into the state-space formulation

of the dispersion process and thus, can perform under general dispersion conditions. Moreover, the increase

in computational power and efficiency in data acquisition hardware, enablethe implementation of the model-

based detection scheme onto a Sensing Aerial Vehicle (SAV). The development of a model-based detection

scheme constitutes the main areas of this research effort.

The goals of research performed under FA9550-09-1-0469 were to:

• Develop a model-based estimation that provides the sensors position employedto find the proximity

of the moving source. The sensor spatial relocation is accomplished by means of an SAV that has

navigation and communication capabilities. The emphasis of the effort is on arriving at a model-

based, optimal sensor repositioning during the search.

• Develop a finite-volume computational method on unstructured grids, that provides in realtime the

solution (process-state estimate) of the 2D advection-diffusion PDE with variable diffusivities and

ambient wind. The unstructured grid allows modeling of complex boundaries (e.g. objects) and

will be adapted with local refinement and coarsening during the process-state estimation, in order to

improve accuracy and efficiency.

The objectives of research performed under FA9550-09-1-0469 were to:

• Develop a new theoretical and approximating framework for the simultaneousestimation of the source

location and the process state associated with a stationary or moving gas source that emits gases in an

ambient environment.

• Develop a performance-based guidance of the sensing aerial vehicle.
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• Develop and implement a computational method that provides in real-time the solution(process-

state estimate) of the generalized PDE that models the 2D advection-diffusion process with variable

diffusivities and ambient wind.

• Theoretical implementation of the proposed scheme is accomplished via an SAV that provides the

spatial relocation of the sensor and communicates with a land-based station.

The Mathematical and Computational Accomplishments of the estimation approach are:

1. Examined various guidance schemes for the sensing aerial vehicle carrying the sensors.

2. Examined both kinematic and dynamic equations of motion for the guidance of the sensing aerial

vehicle.

The Theoretical Accomplishments of the estimation approach are:

1. Developed a model-based estimation scheme that provides in real time the estimate of the concentra-

tion due to the gaseous release.

2. Provided an estimate of the proximity of the moving gaseous source via the motion of the mobile

sensing aerial vehicle.

3. Developed a vehicle guidance scheme using Lyapunov redesign methods.

4. Incorporated the motion of the sensing aerial vehicle into the estimation equations.

5. Dictated the motion of the sensing aerial vehicle by the performance of the estimation scheme

The Computational Accomplishments of the computational method are:

1. Developed a multi grid, multi step finite volume method with upwind and flux limiting.

2. Developed grid adaptation with local refinement and coarsening duringthe process state estimation.
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Figure 1: Overview of model-based estimation scheme with sensing aerial vehicles.

1 Overview

The goal of the work is to provide, in real time, an estimate of the gas concentration associated with an

emitting moving source. Minimizing the damage from a toxic release must address not only the source

location or its proximity, but also the contaminated material that has already beenreleased (i.e. estimate the

concentration field). The strategy applied in this research effort is not toreposition the sensors to areas of

higher concentration (i.e. a local maximum concentration), but to send the sensors to areas of higher state

estimation error. An overview of the proposed scheme is presented in Figure 1.

2 Physical model

The physical model employed for the estimation theory developed under FA9550-09-1-0469 is briefly

described. The gaseous release under investigation is assumed to occuron a 2D plane given byΩ =

[0, LX ] × [0, LY ] ⊂ R
2 which is assumed to be oriented parallel to the surface of the earth [1, 2, 3]. A

moving point sourceS(t,X, Y ) = b(X,Y )u(t) is considered, having a release rateu(t) and a spatial dis-

tribution b(X,Y ) with the spatial variables(X,Y ) ∈ Ω and represented as

b(X,Y ) = δ(X −Xc(t))δ(Y − Yc(t)), (X,Y ), (Xc(t), Yc(t)) ∈ Ω, t ∈ R
+ (1)

where the time varying centroid of the source is denoted byθc(t) = (Xc(t), Yc(t)) ∈ Ω [4, 5]. It is as-

sumed that the dispersion of the gas is in the turbulent diffusion regime, that there are no chemical reactions,
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the ambient speed (wind) is constant, and that there is no impact on the incompressible background. Un-

der these conditions the dispersion can be described by the 2D advection-diffusion equation for the mean

concentrationc(t,X, Y ) given by [1, 2, 3]

∂c

∂t
+WX

∂c

∂X
+WY

∂c

∂Y
=

∂

∂X

(
KXX

∂c

∂X

)
+

∂

∂Y

(
KY Y

∂c

∂Y

)
+ S(t, θc),

c (0, X, Y ) = c0 (X,Y ) , (X,Y ) ∈ Ω, t ∈ R
+

whereWX ,WY are the mean (wind) speed of the background, andKX ,KY are the eddy diffusivities in

theX andY directions respectively. The resulting equation with the Dirichlet boundaryconditions and

unknown initial conditions is expressed as

∂c

∂t
+WX

∂c

∂X
+WY

∂c

∂Y
= KXX

∂2c

∂X2
+KY Y

∂2c

∂Y 2
+ S (t, θc) ,

c (0, X, Y ) = c0 (X,Y ) , c (t, 0, 0) = c (t, LX , 0) = c (t, 0, LY ) = c (t, LX , LY ) = 0.

(2)

3 Plant data generation

In the absence of measurements taken with the SAV, the sensor data (i.e. the plant) must be generated using

(2). The numerical solution of (2) is obtained with a finite-volume method (FVM)[6]. The basic steps of this

method are summarized following the implementation outlined in Gatsoniset al. [7]. The computational

domainΩ is discretized with a set of(NX+1)×(NY +1) grid points defining the centers ofN = NX×NY

rectangular finite volumes. The PDE (2) is written in conservative form as

∂c

∂t
+
∂(cWX)

∂X
+
∂(cWY )

∂Y
−

∂

∂X

(
KX

∂c

∂X

)
−

∂

∂y

(
KY

∂c

∂Y

)
= S(t, θc). (3)

This flux-form is integrated over a fixed finite volumeΩc with a surface areaA = An̂ as

∂

∂t

∫∫

Ω

cdV +

∮

S

F · ndS =

∫∫

Ω

SdV, (4)

where the total flux term is expressed as the sum of the convective and diffusive terms

F =
(
fCX + fDX

)
X̂+

(
fCY + fDY

)
Ŷ,
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Figure 2: Graphical representation of the state error for guidance scheme.

with

fCX = cWX , fCY = cWY fDX = −KXX
∂c

∂X
, fDY = −KY Y

∂c

∂Y
.

The integration (4) over a cell volumeΩc,ij with vertex(ij) shown in Figure 2 results in the semi-discrete

equation

dcij/dt = −1/Ωc,ij
∑

sides

(
FEij .A

E
ij + FWijk.A

W
ijk + FNij .A

N
ij + FSijk.A

S
ijk

)
+ Si,j . (5)

The flux evaluation requires in general the local normal to a surface. For example, on the east surface of the

volume(ij) the normal is

nEij = nEX,ijX̂+ nEY,ijŶ,

and the flux is

FEijA
E
ij = (fCEij + fDEij )nEX,ijA

E
ij + (gDEij + gDEij )nEY,ijA

E
ij .

For the structured grid with rectangular finite volumes considered here, thelocal normal is positive away

from each finite volume surface

nEij = X̂, nWij = −X̂, nBij = Ŷ, nSij = −Ŷ,

FEijk.A
E
ijk = (fCEijk + fDEijk )AEijk.
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The convective fluxfCEij at the east boundary is calculated as the average of cell centered fluxes for adjacent

cells as

fCEij =
1

2

(
fCEi+1,j + fCEij

)
.

The diffusive flux for the east boundary is calculated with a central difference approach at the cell interface

as

fDEij = KXX
∂c

∂X

∣∣∣∣
E

i,j

= KXX |ij
ci+1,j − ci,j
Xi+1,j −Xi,j

.

The flux calculation for the remaining three sides follows similarly. The cell Péclet number is a measure

of the relative strengths of the convective and diffusive parts of the flow and is defined asPe = W/K. At

larger Ṕeclet numbers(|Pe| > 2), the convective fluxes are evaluated using upwinding. ForWX > 0,

fCEij = fCEij = cWX |ij , fCWij = fCWi−1,j = cWX |i−1,j .

ForWX < 0,

fCEij = fCEi+1,j = cWX |i+1,j , fCWij = fCWij = cWX |ij .

The semi-discrete equation (5) can be written as

dcij/dt = −1/Ωij
[
ci+1,ja

E
ij + ci−1,ja

W
ij ci,j+1a

N
ij + ci,j−1a

S
ij + ci,ja

P
ij

]
+ Si,j . (6)

The coefficients are given by

aWij = max

[
FW ,

(
DW +

FW
2

)
, 0

]
, aEij = max

[
−FE ,

(
DE −

FE
2

)
, 0

]
,

andDW ,DE , FW andFE are defined as

DW =
KW

δXWP

AW , DE =
KE

δXPE

AE , FW = (cWX)W AW , FE = (cEX)E AE .

whereδXWP is the distance between the volume(ij) and the west volume. Application of (6) to all cell

centers, leads to a system of(NX ×NY ) = N semi-discrete ODEs.

Introducingx = c = {c1, . . . , cN} as the finite dimensional representation of the state vector, the
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indexing for mapping from(ij) to n is expressed as

cn = cij , n = (j − 1)NX + i, j = 1, NY , i = 1, NX .

The system of semidiscrete ODEs can then be written in the state-space form as

ẋ = Ax+Bu. (7)

The source is represented by the release rateu (t) and the spatial distribution associated with the source

location(Xc, Yc), (1). For a point source release located within volume(ij), the vectorB is all zeros with a1

located atB (n). The(N ×N) state matrixA is associated with the finite dimensional approximation of the

advection diffusion equation. The operatorA (t) is constructed with thea coefficients. TheaP coefficient

located atA (n, n) is the entry for thenth finite volume and thus the entry for the corresponding state

xn. The remaining coefficient are located atA (n,m), wherem is the index location of the corresponding

neighboring node.

The system of semi-discrete ODE’s as in equation (5) is integrated using the four-step Runge-Kutta

scheme expressed as

c(m) = c(n) − αm∆tR
(AV )c(m−1), m = 1, 2, 3, 4, c(n+1) = c(4)

wherec(n) is the concentration at time leveln andα1 = 0.25, α2 = 0.333, α3 = 0.5, α4 = 1.0.

3.1 Sensor measurements from numerically generated process model

The sensor is assumed to have measurement data on the concentration and gradient at its current spatial

location. Measurement data is taken from the simulation of the plant. The state measurement at the spatial

location,c(X,Y ), is calculated as the weighted average based on the inverse distance to the 4nearest volume

centers

c(X,Y ) =
cNE ∗ d

−1
NE + cSE ∗ d

−1
SE + cSW ∗ d

−1
SW + cNW ∗ d

−1
NW

d−1
NE + d−1

SE + d−1
SW + d−1

NW

.

The structured discretization of the grid allows the local gradient( ∂c
∂X
, ∂c
∂Y

) to be calculated with the second

order central differencing scheme for nonuniform spacing [6, 8]. This approach calculates the gradient based
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on two computational points in each direction and the distance to the points.

4 Model-based State Estimation and Sensor Guidance

4.1 Output measurement model

Numerous sensors are available for the measurement of trace species in the atmosphere. They are available

in several types with many different operating characteristics including size, sensitivity, dynamic range,

reliability, and response time [9, 10, 11, 12]. Here, a specific sensor and contaminant pair have not been

chosen, so a generalized sensor model is constructed based on realisticsensor parameters. It is assumed that

the sensor is selective and able to distinguish the contaminant from the other constituents in the atmosphere.

A mobile agent equipped with a sensor is able to provide concentration information c(t,X, Y ) at the

spatial pointθs = (Xs, Ys) ∈ Ω. Similar to the source model in (1), the spatial distribution of the sensor

is also modeled by a spatial Dirac delta function. It is assumed that there is no noise and the measurement

device provides exact readings of the local concentration

y(t; θs) = c(t,Xs, Ys) =

∫ LX

0

∫ LY

0
δ(X −Xs)δ(Y − Ys)c(t,X, Y ) dX dY

With the sensor mounted on a mobile agent (SAV), it is able to provide measurement data at various locations

within the spatial domainΩ as a function of time. The time dependent sensor measurement taken at the

centroidθs(t) of the sensor is then

y(t; θs(t)) =

∫ LX

0

∫ LY

0
δ(X −Xs(t))δ(Y − Ys(t))c(t,X, Y ) dX dY. (8)

which is essentially the concentrationc(t,X, Y ) at the current positionθs(t) of the SAV.

4.2 Abstract formulation of advection diffusion PDE

The advection diffusion PDE (2) can be viewed as an evolution equation in an appropriate Hilbert space.

Such an abstract formulation is conducive to both the ensuing stability analysis for the resulting state esti-

mator and its finite dimensional approximation.

The state space is taken to beX = L2(Ω) equipped with inner product denoted by〈·, ·〉 and norm by

8



| · |. Additionally, we considerV = H1
0 (Ω) be the Sobolev space withV dense inX . Such a consideration is

necessitated as the output and input operators are defined inV and its dualV∗ [13]. The concentration state

is an element of the Hilbert spacex(t) = c(t, ·, ·) in X over [0, T ]. The PDE (2) can then be written as an

evolution equation [14, 15]

ẋ(t) = Ax(t) + B(θc(t))u(t), x(0) = x0 ∈ X

y(t; θs(t)) = C(θs(t))x(t)

(9)

whereA ∈ L(V ,V∗) is the elliptic operator associated with the advection diffusion PDE (2),B(θc(t)) is

the location-parameterized input operator associated with the source spatial distributionb(X,Y ) in (1), and

C(θs(t)) is the output operator associated with the time dependent sensor measurement (8). For the problem

to be well posed, one needs to imposeB(θc(·))f(·) ∈ L2(0, T ;V∗), see [16, 17, 15]. Equation (7), as used

for plant generation, constitutes a finite dimensional representation of the evolution equation (9).

4.3 Model-based State estimation

The estimator developed in [18] is modified to account for vehicle dynamics and is applied in this work

to estimate the concentration state over the entire spatial domain. In summary, a Luenberger observer is

implemented with the filter gain taken to be a constant multiple of the dual of the outputoperator (collocated)

and given by

˙̂x(t) =
(
A− γC∗(θs(t))C(θs(t))

)
x̂(t) + γC∗(θs(t))y(t; θs(t)), x̂(0) 6= x(0), γ > 0, (10)

Equation (10) constitutes half of the integrated estimation and guidance equations. It is accompanied by

another equation that provides the time-variation of the sensor centroidθs(t), which would dictate the spatial

repositioning of the SAV within the spatial domainΩ. This spatial repositioning is given implicitly in terms

of the control inputs (torques) to the aerial vehicles that carries the sensor.

Sensor guidance is dependent on the state estimation error, that ise(t) = x(t) − x̂(t). The spatially

distributed state errore(t,X, Y ) = x(t,X, Y )− x̂(t,X, Y ) may be denoted simply ase(t) when considered
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as an element of the Hilbert spaceX . Using (9) and (10), the evolution of the state error is

ė(t) = A(θs(t))e(t) + B(θc(t))u(t),

e(0) = e0 ∈ X .

(11)

whereAcl(θs(t)) ,
(
A− γC∗(θs(t))C(θs(t))

)
.

4.4 Sensing device model

The physical construction of sensors introduces inherent limitations in the sensor operation. Ram et al [9]

provide a good discussion on sensor construction and design. Many trace contaminant sensors do not take

continuous measurements, but instead have a recovery time or transient response time between sensor read-

ings [10, 19, 20]. Transient effects limit the time between accurate sensorreadings. A sensor that provides

accurate measurements at a very fast sample rate will clearly provide more information than one that sam-

ples slower. This research effort is interested in real time state estimation, sofaster measurement frequencies

are desirable. Optical based sensors such as chemiluminescence detectors and absorption spectroscopy are

able to sample every 1-5 seconds [10]. For the numerical experiment considered in this research effort, time

between samples is taken to be 2 seconds.

Sensor dead-zone and threshold saturation are also implemented in the model.All trace contaminant

sensors have maximum and minimum sensing thresholds that determine the limits of thesensing ability.

When the state is below a minimum thresholdcmin, the sensing device does not detect an elevated measure-

ment. This is referred to as a dead-zone. When the state is above the maximumcmax, the output from the

sensor is the saturated value. These limits are expressed below

cS(Xs, Ys) =





0 c(Xs, Ys) < cmin

c(Xs, Ys) cmin < c(Xs, Ys) < cmax

cmax c(Xs, Ys) > cmax

(12)

When taking sensor measurements on the environment, the time rate of change of the sensor depends

on the process under investigation (the atmospheric advection diffusion) as well as the motion of the sensor
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and the spatial gradient of the concentration [21] as shown below

dc

dt
=

(
∂c

∂t

)

X,Y

+
dX

dt

(
∂c

∂X

)

Y,t

+
dY

dt

(
∂c

∂Y

)

X,t

wheredX
dt

is the velocity of the sensor in theX direction and∂c
∂X

is the spatial gradient of the contaminant

in theX direction. This effort simplified sensor measurements and assumed sensorreadings at the current

location of the sensing agent were directly available.

4.5 SAV dynamics

The movement of the sensor throughout the domain is accomplished with an SAV. For simplicity, the sensor

location is taken to be at the barycenter of the SAV. The equations of motion describing the mobile agent

position will then be valid for the position of the sensor centroid.

Depending on the focus of the work, mobile agents may be modeled with great detail [22, 23] or very

simply [24, 25, 26, 27]. In this effort, the mobile agent is modeled as a fixed wing unmanned aerial vehicle

with basic autopilot controls. With knowledge of its own state, the lower level controllers account for

deviations in the trajectory of the aircraft caused by wind, coupled control surfaces, and other disturbances.

The SAV is assumed to be rigid and symmetric with a collocated center of mass and center of gravity, which

allows the equation of motion to be presented in a more compact form. The mass and moment of inertia are

assumed constant throughout the simulation. For simplicity, many works focuson the kinematic motion and

neglect the dynamics. However,, in order to provide a more accurate representation of the SAV motion, this

research effort considered the dynamic equations of motion.

The SAV motion is constrained due to the physical limitations of the aircraft. The agent’s speed,v(t),

and turning rate,ωψ(t), are constrained within maximum and minimum values [27, 28, 29].

0 < vmin ≤ v ≤ vmax, −ωψmax ≤ ωψ ≤ ωψmax.

The thrust and turning force are also constrained as

−τlmax ≤ τl ≤ τlmax, −τamax ≤ τa ≤ τamax.

For an aircraft equipped with a lower level autopilot [29, 23], the pose of the sensor may be described
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Figure 3: Schematic of the SAV coordinate system in 2D.

by the kinematic equations [27] given by

Ẋ(t) = v(t) cos(ψ(t)), Ẏ (t) = v(t) sin(ψ(t)), ψ̇(t) = ωψ(t), (13)

where the pose is represented by the cartesian position(X,Y ) and the SAV’s heading angleψ. The motion

is determined by the SAV’s speed and angular turning rate(v(t), ωψ(t)) as shown in Figure 3. Equation (13)

can be expressed in matrix form

q̇(t) = S(t)v(t) (14)

whereq̇(t) =
[
Ẋ(t), Ẏ (t), ψ̇(t)

]T
, v(t) =

[
v(t), ψ̇(t)

]T
, and the transformation matrixS(t) is

S(t) =




cos(ψ) 0

sin(ψ) 0

0 1



. (15)

These equations are the same for those of a differential drive robot [29], with the additional constraint that

the fixed wing aircraft must hold a minimum forward velocity to maintain lift.

The 2D dynamic equations of motion for steady state flight given in inertial coordinates [30, 31, 24, 25,
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23] are given by

M




Ẍ

Ÿ

ψ̈



=




cos(ψ) 0

sin(ψ) 0

0 1






τl

τa


+




−Mψ̇vsinψ

Mψ̇vcosψ

0




(16)

whereτl is the thrust andτa is theangular torqueapplied by the control surfaces to the center of mass.

Since the equations are for steady flight, there is no explicit drag component.With τl andτa set to zero,

the aircraft maintains constant speed and angular turning rate. The mass matrix M is expressed asM =

diag{M,M, I}, whereM is the mass andI the moment of inertia of the SAV. Equation (16) can be rewritten

in matrix form as

Mq̈ = B1τ −ATλ. (17)

Substituting equation (14) into equation (17), along withq̇ = Ṡv + Sv̇, result in

M ˙(Sv) = B1τ −ATλ⇒MSv̇ +MṠv = B1τ −ATλ.

Premultiplying byST yields

STMSv̇ + STMṠv = STB1τ − STATλ. (18)

The equation is simplified with the introduction of the transformed mass matrixM1 = STMS = diag{M, I}.

The termSTM1Ṡ is simplified toSTM1Ṡ = 02×1. The input control matrixB2 is also simplified to

B2 = STB1 = I2×2. As a consequence of the premultiplication byST , the constraint matrix is eliminated

from (17) sinceSTAλ = 02×1. For the inputsτ = [τl, τa], the dynamic equation of motion from (18) can

then be written as

M1v̇ = B2τ. (19)

Remark 1 When the SAV is assumed massless and inertialess, the kinematic equations(14) can be used to

describe the SAV motion in 2D. If it is further assumed that its motion is holonomicand not constrained by

(14), then it is able to implement motion with any desired direction and speed. In fact, this was considered

in [18].
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4.6 SAV guidance

The Lyapunov functional used in [18, 32, 33] is modified to include the kinetic energy of the SAV

V = −〈e(t),Acl(θs(t))e(t)〉+KE.

The kinetic energy of SAV is related to its mass and velocity asKE = 1
2 q̇

TMq̇. Transforming from

cartesian velocities to body velocities with equation (14) yieldsKE = 1
2v

TSTMSv = 1
2v

TM1v. For an

aircraft with its motion constrained in a 2D plane parallel to the ground, the gravitational potential energy

term is equal to zero. The Lyapunov functional is re-written

V = −〈e,Acl(θs)e〉+
1

2
vTM1v (20)

Taking the time derivative of the Lyapunov functional along the trajectoriesof the state error (11) and the

complete dynamics of the craft (14), (19) yields

V̇ =
(
− |Acl(θs)e|

2 + εεXẊ + εεY Ẏ
)
+ vTM1v̇

= − |Acl(θs)e|
2 +

[
εεX εεY 0

]
q̇+ vTM1v̇.

Substituting equations (14) and (19) simplifies to

V̇ = − |Acl(θs)e|
2 +

[
εεX εεY 0

]
Sv + vTM1v̇

= − |Acl(θs)e|
2 +

[
εεX εεY 0

]
Sv + vTB2τ,

(21)

whereε denotes the state estimation error at the current sensor location andεX , εY denote the spatial gra-

dients of the estimation error at the sensor location. The control law can nowbe developed to ensure that

the Lyapunov derivative is negative semi-definite and the guidance scheme drives the sensor to areas of

higher state error. Focusing on the part of equation (21) to be made negative definite and recognizing that

vTB2τ =
(
vTB2τ

)T
gives [

εεX εεY 0

]
Sv + (B2τ)

T
v ≤ 0
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Solving for the input torque yields the following control guidance law

τ = −B−1
2 ST

[
εεX εεY 0

]T
(22)

To better understand the control law (22), the matrices are expanded as



τl

τa


 = −




cosψ sinψ 0

0 0 1







εεX

εεY

0



=



−εεX cosψ − εεY sinψ

0


 (23)

The above relates the SAV motion control, via the torqueτ , to the performance of the estimator; in other

wordsthe motion of SAV is dictated by the performance of the estimator and is given explicitly in terms of

the output estimator errorε(t) and the spatial gradientsεX(t), εY (t) of the estimation error at the current

sensor location.

The control torque can further be modified to makeV̇ = − |Acl(θs)e|
2 − vTKv “more” negative by

including velocity terms

τl = −c1(εεX cosψ + εεY sinψ)− k1v − k12ψ̇, c1 > 0, k1 > 0, k12 ≥ 0

τa = −k12v − k2ψ̇, k2 > 0, k12 ≥ 0.

(24)

The constantsc1, k1, k12 are user-defined guidance gains, chosen to achieve desired sensorperformance. In

this research effort,c1 was chosen so that the input torque is of the same order of magnitude as the agent

physical limitations (i.e. the input is not always saturated). The−k1v− k12ψ̇ term was not required for this

instance.

The Lyapunov-based guidance scheme (22) only provides motion control inputs for the thrustτl. While

the extension in (24) could possibly include a velocity term in the rotational dynamics via the additional

entries of the positive semi-definite matrixK

Iψ̈ = τa = −k12v − k2ψ̇, k2 > 0, k12 ≥ 0

it is nonetheless unable to address the rotational motion in an effective manner. A supplementary controller
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was used whereby the angular torque input was given by

τa(t) = Iψ̈d(t)− kd

(
ψ̇a(t)− ψ̇d(t)

)
− kp

(
ψa(t)− ψd(t)

)
(25)

The current heading angle was taken to beψa(t). The desired heading angleψd(t) was defined as the angle

created by the two cartesian torques

ψd = arctan

(
ǫY
ǫX

)

The above choice stems from the work in [18] which considered a masslessand inertialess sensing agent.

From equation (25),̇ψd, the time derivative of the desired angle was calculated numerically.

4.7 SAV deployment model

Prior to initiating the tracking scheme, the SAV assumes no source is present inthe domain. With knowledge

of the current wind profile, the sensor is strategically placed downwind in the domain. As the wind blows,

it will advect contaminant towards the sensor. Although patrolling downwind of the source will increase

the probability of detecting a source in the domain, the search strategy is not assumed optimal. The sensor

travels in a circular path downwind continuously taking readings until it detects an elevated concentration,

(12). The sensing agent then stops patrolling and begins searching forthe source via (10), (22), (25). At this

point, the detection scheme begins estimating the process state and providing themobile sensing agent with

the appropriate command signals from the guidance scheme.

5 Finite dimensional approximation and sensor-based grid adaptation

The estimator is approximated as a finite dimensional system similar to the approachused with the plant

in (7). A conservative form of the advection diffusion equation is used and integrated with the four stage

Runge-Kutta scheme. Since it is desired to calculate the estimator in real time, the dimension of its finite

dimensional approximation is reduced compared to that of the plant. To maintain adesired level of accuracy

in regions of interest, while keeping the computational requirements, grid adaptation is implemented. The

implementation of a reduced dimensional estimator also avoids theinverse crimeproblem that is associated

with a numerical simulation and inversion that are of the same discretization. An equivalent discretization

in the forward simulation and estimated state would provide results that are overly optimistic [34].
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Figure 4: Graphical representation of the state error for guidance scheme.

The limited computation power and desire for a real time solution suggested the use of grid adaptation

techniques [35, 36]. For this research effort, a combination of a stretched grid and switched system were

implemented. The estimation scheme discretized the domain with 9 stretched grids. Each of the stretched

grids consisted of a predefined number of volumes in each direction. This created a system that was low

enough in dimension to be solved in real time. Each stretched grid had an areaof relatively high resolution

that was meant to focus on the area of interest. The rest of the domain consisted of a coarser discretization

to keep computational requirements low. Autonomous state dependent switching [37] control was applied.

When the area of interest changed, the grid was switched to ensure the location of interest always had a

higher degree of discretization than the rest of the domain.

This hybrid dynamical system couples the estimation scheme with the computationalscheme, using

one to enhance the other. Numerically, this switching changes several of the matrices used in the state

space formulation. At each switching instance, the state matrixA had to be recalculated. The data from

the old stretched grid was moved to the new one by means of a prolongation andrestriction operation.

A prolongation operator transferred information from the old grid to a new,higher dimensional one with

higher resolution. A restriction operator then transferred the data to the new grid. Nine restriction and

prolongation operators were created a priori in order to handle all switching cases [35]. This helped to

minimize computations during the state estimation. The outputC matrix changed just slightly due to the
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A 1 A 5 A 8

Figure 5: Example of grid adaptation with high resolution area highlighted.

spatial location of the sensor, but since it was created at each time step, information did not have to be

transferred from one to another when the switch occurred. Below, Algorithm 1 outlines the grid adaptation

logic. Figure 5 demonstrates the grid adapting from Grid 1, to Grid 5, then to Grid 8 as the sensor position

moves between the locations noted. The set of available switched grids resulted in a family of matrices

Algorithm 1 State dependent grid adaptation

1: estimate(X,Y, ψ)c
2: calculate nearest switched grid
3: if nearest grid6= current gridthen
4: set new grid to nearest grid
5: switch state matrix,A
6: prolongate concentration data to general grid
7: restrict state information to new grid
8: end if

{Ai, i ∈ I} based on the index setI. In this research effort, the switching signal (which was based on the

sensor location) was a piecewise constant function in time represented byσ : [0,∞) → I. Consider the

family (Sp)p∈I of linear systems that are continuous in time. For eachp ∈ I, the estimator is given by

˙̂x
n
(t) =

(
Ap − γC

T
p (θs(t))Cp(θs(t))

)
x̂n(t) + γCTp (θs(t))y(t; θs(t)) (26)

The current sensor positionθs(t) dictates the switching signal and subsequently the choice of the matrices

Ap, Cp. At the same time, the state estimator along with the guidance scheme (10), (22) provide the spatial

repositioning of the SAV.
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FV Solution to the A/D Equation
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Real-Time 
Tracking and 

Source 
Localization 

Code

Figure 6: Simulation Flow Chart.

6 Implementation pseudo code and flowchart

Due to the lack of experimental data, simulations for this work were carried out in two parts. The first part

consisted of generating acceptable sensor data that the estimator could access in place of real measurements

as described in Section 3. A source in a 2D domain was simulated on a high dimensional system with the

concentration profile saved to file at every time step. The high dimensional approximation was computation-

ally expensive and was therefore done a priori and stored to file. In practice, this step would not be required

and measurement data would be taken directly. The pseudocode for the generation of experimental data can

be seen in Algorithm 2. The actual estimation was done in the second part of the simulation. As the sensing

Algorithm 2 Generating of Sensor Data

1: read simulation parameters
2: discretize high dimensional uniform grid
3: for t = dt to tfinal do
4: calculate source location(X,Y )c
5: RK4 integration of forward statex
6: apply boundary conditions
7: end for
8: output state at each time step to file

aerial vehicle moved around the spatial domain, it was continuously taking measurements, which consisted

of reading small portions of the stored data from the files created in the generation of source data. Algorithm

3 details the estimation process and the entire simulation is outlined in Figure 6.
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Algorithm 3 State Estimation Scheme
Require: Output data files from forward problem.

1: read simulation parameters
2: generate a priori switched system grids
3: known(X,Y, ψ)s
4: for t = dt to tfinal do
5: read c(Xs, Ys, t),

∂c(Xs,Ys,t)
∂X

, ∂c(Xs,Ys,t)
∂Y

6: if c(X,Y, ψ) ≥ ymin then
7: if request command signalthen
8: τl(t)← −c1(εεX cosψ + εεY sinψ)− k1v − k12ψ̇
9: τa(t) from (25)

10: end if
11: RK4 integration of̂x
12: apply BCs
13: else
14: continue patroling
15: end if
16: calculate new(X,Y )s
17: switch grid
18: end for

7 Summary of Simulation Results

Several simulations have been performed with the developed guidance scheme. For consistency, the domain

size in each case was taken to be 4 km× 4 km. The eddy diffusivity was assumed constant in space and time

as20m2/s. The wind was also assumed constant in space and time, blowing at5m/s to the East and5m/s

to the North. In all cases, the sensor started in the downwind area of the domain in a patrolling behavior.

Simulations are conducted on a 5 node Linux cluster running Red Hat 3.4.6. The serial code was implanted

on one of the nodes with a Quad Core Intel Xeon processor running at 2.33GHz and 16GB of RAM. The

code was compiled with Intel’s Fortran compiler IFORT version 9.0. Data visualization was performed with

Tecplot 360 software version 12 running on a Windows 7 workstation.

The numerical discretization of the forward problem (plant) in each case was chosen to be a90 × 90

structured, uniform grids. The estimator discretization was significantly coarser at just30×30 computational

points. These discretizations ensured high fidelity data was available from the forward problem, while still

allowing the estimator to be calculated in real time. A computational time step of0.1s was chosen for all

simulations, which was significantly below the value dictated by stability requirements.

20



X (meters)

Y
(m

)

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

Sensor
Source

Figure 7: Trajectory of the sensor (green) and with a stationary source(red).

7.1 Stationary Source

A stationary source was simulated with a constant release rate in the center ofthe domain. Such a stationary

source would be expected for a crash or leak situation. The entire500s simulation took187s to calculate.

Figure 7 shows the trajectory of the sensor as it travels towards the source. At approximately110s, the

sensor detected a nonzero concentration and begun the estimation process. As shown in Figure 8, the sensor

got very close to the source in approximately180s. From the plot of the norm of the concentration error

given in Figure 9, it can be seen that the norm is increasing until the sensor starts heading towards the source.

The error norm then quickly falls. The error then fluctuates around a non-zero value, as is expected since

the source is stationary and the sensor can not stop moving. As the SAV fliespast the source, the state error

at the location of the source increases until the sensor is driven back to the source location.

7.2 Crossing Source Trajectory

A crossing source trajectory was also considered. The source traveled directly across the diagonal of the

domain, then traveled directly across the other diagonal. The source in this case had a maximum velocity

of 15m/s. The crossing source trajectory simulated1450s and took892s to compute. The trajectory of

the source and sensor is shown in Figure 10. At approximately200s, the sensor detected the source and
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Time (s)

C
on

ce
nt

ra
tio

n
(k

g/
m

^3
)

0 100 200 300 400 500
0

0.0005

0.001

0.0015

0.002

0.0025

Figure 9: State error norm for a stationary source.
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Figure 10: Trajectory of the sensor (green) and a crossing source trajectory (red).

begun the estimation process. Figure 11 shows that the sensor and source got very close in around400s.

From the plot of the state error norm in Figure 12, the guidance scheme drives the state error towards zero.

Fluctuations in the value were due to the fact that the sensor was constantly moving.

7.3 Circular Source Trajectory

A circular source trajectory was examined in the third simulation. Such a situationmodels a source releasing

material over a designated area in order to cause damage to that area. Thecircular source trajectory simulated

500s and took437s to compute. The source had a maximum velocity of15m/s. The trajectory of the source

and sensor is shown in Figure 13.

Figure 14 shows the distance between the source and sensor as a function of time. The sensor remained

close to the source for most of the trajectory, but wandered away at two points. The first was around400s.

At this point, the sensor went too far towards theX-axis and initiated a spiral outward search to again find

the plume. When it found the plume, it traveled downwind where there was a high state estimation error

before heading towards the plume upwind. The second loss occurred around550s. Here, the sensor traveled

too far towards theY axis and lost the plume, but quickly returned toward the source. The state error norm

plot is given in Figure 15. In both cases where the sensor lost the plume, the norm can be seen to increase a

bit. However, the overall trend of the norm is driven towards zero, as desired.
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Figure 11: Distance between the sensor and a crossing source trajectory.
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Figure 12: State error norm for a crossing source trajectory.
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Figure 13: Trajectory of the sensor (green) and a circular source trajectory (red).
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Figure 14: Distance between the sensor and a circular source trajectory.

25



Time (s)

C
on

ce
nt

ra
tio

n
(k

g/
m

^3
)

0 100 200 300 400 500 600 700
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Figure 15: State error norm for a circular source trajectory.

7.4 Overlapping Source Trajectory

An overlapping source trajectory was simulated. This type of source wouldbe applicable to an intruder

doing surveillance over an area, or quickly entering an area to deposit material and quickly leave. The

overlapping source trajectory simulated700s and took226s to compute. The maximum source velocity in

this case was18m/s. The trajectory is shown in Figure 16. For this trajectory, the source followed the

sensor very closely for the entire simulation. The sensor detected a nonzero concentration after120s and

quickly started following the source. The norm of the state error for this trajectory provided some interesting

results. The norm was reduced as the source traveled through the firsthalf of the trajectory. However, as

the source traveled along the second half, it was traveling downwind. With the sensor slightly behind the

source and the material from the source advecting downwind, the state error norm was slowly increasing,

until the source stopped heading directly downwind in approximately650s. The norm then again continued

to decline.

8 Conclusions

A model-based estimation scheme of a mobile gaseous source has successfullybeen considered for a 2D

spatial domain. Such a spatial domain was assumed to be parallel to earth’s surface. Using a mobile sensor
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Figure 16: Trajectory of the sensor (green) and an overlapping source trajectory (red).
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Figure 17: Distance between the sensor and an overlapping source trajectory.
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on board an unmanned aerial vehicle (sensing aerial vehicle), the estimation scheme provided the spatial

repositioning of the SAV in terms of control inputs (torques) to the SAV. UsingLyapunov methods, the

model-based estimation scheme accounted for the dynamic motion of the SAV and provided its guidance in

terms of the performance of the estimation scheme; thus the motion of the SAVwas solely dictated by the

performance of the estimation scheme. Such a scheme was essentially a (spatial) gradient scheme where the

SAV was guided to the spatial regions of higher state estimation error or highergradients of the estimation

error.

While the infinite dimensional model of the physical process associated with thegaseous source had a

fixed state operator, the state estimator, through its finite dimensional implementation, lend itself in state-

dependent switching. This was made possible through different evaluations of the advection-diffusion op-

erator over different grids. Multiple grids representing different coarser/refined grids of the 2D spatial

domain, representing different regions of interest within the 2D spatial domain were used to evaluate the

advection-diffusion operator. The resulting switched system switched to adifferent state matrix depending

on the current location of the sensor. Thus, aperformance based switching that bridged computational fluid

dynamics and controlswas considered in this research effort.
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